
NASA-CR-197954

7 /

Research Institute for Advanced Computer Science
NASA Ames Research Center

Unstructured Grids on

SIMD Torus Machines

Petter E. Bjcrstad Robert Schreiber

(NASA-CR-197954) UNSTRUCTURED
GRIDS ON SIMD TORUS MACHINES
(Research Inst. for Advanced

Computer Science) 10 p

G3/61

N95-23610

Unclas

0043873

RIACS Technical Report 94.05 March 1994

To appear: Proceedings of the 1994 Scalable High Performance Computer Conference, Knoxville,

Tennessee, May, 1994.

Unstructured Grids on

SIMD Torus Machines

Petter E. Bjcrstad Robert Schreiber

The Research Institute of Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was supported by NASA via Contract NAS 2-13721 between NASA and the Universities
Space Research Association (USRA). Work was performed at the Research Institute for Advanced Computer
Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000.

Unstructured Grids on SIMD Torus Machines

Petter E. Bjorstad Robert Schreiber

Computer Science Department

University of Bergen, N-5020

Bergen, Norway

Research Institute for

Advanced Computer Science

MS T27A-1

NASA Ames Research Center

Moffett Field, CA 94035

Abstract

Unstructured grids lead to unstructured communi-

cation on distributed memory parallel computers, a

problem that has been considered difficult. Here, we

consider adaptive, offline communication routing for a

SIMD processor grid. Our approach is empirical. We

use large data sets drawn from supercomputing appli-
cations instead of an analytic model of communication

load. The chief contribution of this paper is an exper-
imental demonstration of the effectiveness of certain

routing heuristics. Our routing algorithm is adaptive,
nonminimal, and is generally designed to exploi_ local-

ity. We have a parallel implementation of the router,

and we report on its performance.

1 Introduction

The subject of this paper is the implementa-

tion of unstructured communication on highly struc-

tured parallel machines. In particular, we investi-

gate the implementation of distributed gather and

sparse matrix-vector multiply operations on a two-
dimensional, toroidal, SIMD processor grid with local

memory; our testbed is the Maspar MP-2.

In a gather operation, a distributed data vector,
the destination vector DEST is created by transfer-

ring values from a distributed source vector, SRC, ac-

cording to distributed index vectors. For purposes

of discussion, we adopt the following notation. If X
is a distributed data vector, then the element of X

stored at processor p and at offset k within that pro-
cessor is denoted X[p; k]. We assume that processor

p stores NSRC[p] elements of SRC and NDEST[p] el-

ements of DEST, and two integer vectors of length

NDEST[p] -- HOME and OFFSET. The value to be

placed in DEST[p; k] (on processor p) is obtained from

SRC[HOME[p; k]; OFFSET[p; k]]. Thus, the gather

operation may be written:

DEST[p; k] *-- saC[HOME[p; k]; OFFSET[p; k]],

for all (p;k) with 1 g p g NPROC and 1 < k g

NDEST[p].

The reason for our interest in this primitive and

its SIMD machine implementation is that it is essen-

tial for the efficient execution of sparse matrix-vector

products. The problem of multiplying a sparse, often
unstructured matrix with a sequence of vectors arises

when using iterative methods for the solution of sparse

linear systems and also when solving the correspond-

ing eigenvalue problem. In such methods, the matrix-

vector multiplication is a key operation. The matrices

are often very large; those arising from discretized par-

tial differential equations in three space dimensions are

exemplary in this respect. When the grid that leads

to the sparse system is a rectilinear mesh, implemen-
tation of matrix-vector product involves simple, near-

est neighbor communication on a processor grid. But
when the mesh is unstructured, gather operations such
as we have described are necessary.

Significant early studies of this problem used the
Connection Machine CM-2 as a testbed. In their stud-

ies, Hammond [3] and DaM [2] concluded the follow-

ing.

1. Good performance can be obtained by assign-

ing rows of the matrix to processors. Row r
is stored by processor MAP[r]. The vectors X

and AX, which store the vector and the result of

the matrix-vector product, are mapped such that

AX[r] is stored by processor MAP[r], and, in gen-

eral, X[r] is stored at processor MAPX[r].

In the solution of systems and the computation

of eigenvalues, the coefficient matrix A is ordi-

narily square, and then it is appropriate to insist
that MAP be the same as MAPX, since the vec-

tors X and AX undergo elementwise dot product

and azpy operations which require that they be

aligned. In the rest of this paper, we shall as-
sume that A is square, and that MAPX is the

same as MAP; the techniques we describe, how-

ever, clearly extend to the general case.

2. The mapping can be chosen a priori, as a func-

tion of mesh topology, to minimize the cost of
the matrix-vector product. This mapping step

has been studied extensively, and many effective

heuristic methods, such a spectral recursive bi-

section, simulated annealing, Kernighan-Lin, and

Cyclic Pairwise Exchange have been proposed [5].

3. Given such a mapping, the implementation of

the matrix-vector product can be reduced to

a gather operation (processor p gets X[j] from

processor MAP[j] for all j such that A[i,j] is

a nonzero mapped to processor p) followed by
a communication-free sparse dot product opera-
tion.

4. Dahl and Saltz, et al. show that naive use of

online message routing is inefficient for gather

and sparse matrix-vector operations, especially

in coarse-grained parallel applications, in which

many matrix rows and vector elements are

mapped to each processor. In this, case, by pre-

processing, one can accomplish several important
optimizations. First, redundant communication

can be eliminated, and communication between

processor pairs can be amalgamated (so that only

one, long message is sent) [8]. Second, one can

achieve communication performance better than

that provided by the online machine communica-

tion layer by heuristically optimized, offiine rout-

ing [2].

Our experimental implementation is on the Maspar

MP-2. The MP-2 has two separate hardware com-
munication mechanisms: the router and the Xnet.

The router is a low-bandwidth interconnect that' im-

plements arbitrary transfers of data from the proces-

sors to a permutation of the processors. The Xnet

is a high-bandwidth toroidal shift network that per-

mits all processors simultaneously to send a datum

to their neighbor at a distance d in a certain direc-
tion, the same direction for all the processors. When

d - 1, the Xnet bandwidth is 16-50 times greater
than the router's. This speed disparity seems to be
a feature that SIMD architectures have in common.

The CM-2, in particular, had it even though it used

the same hardware (i.e. wires) for both toroidal shift

and general communication. For this reason, we have
attempted, by using heuristic optimizations to pre-

determine the routing and scheduling of the data, to

perform gather operations as a sequence of toroidal
shifts.

The problem of packet routing in interconnection

networks, including grids and tori, has been heavily

studied in the theory of parallel algorithms [1, 6]. We
feel this study adds to what is known, because the

routing problems we study are drawn from practice,
and we report on the actual performance of out pro-

posed methods on those problems. The problems dif-

fer from those studied in that they are nonrandom,

have enormous locality, are not permutations, and do

not route one packet from each processor. Because we

consider problems of large granularity and use offiine

methods, we expect to achieve better performance.

We began this effort because we felt that the no-

tion that SIMD grid architectures were not usable for
less than perfectly well structured computations was

wrong, and that the key to making them useful was

to use the structured, fast grid communication rather

than the fully general router. We believe that this
study, while it does not definitively resolve this ques-

tion, does make that viewpoint more plausible.

Sparse matrices arisingin other contextsmay not

be amenable to thisgeneralapproach. Ifthe graph of

A does not have small separators,a mapping provid-

ing the localitywe requireisnot possible.A second

approach, which has been advocated and implemented

by Hendrickson, Leland, and Plimpton [4];Lewis and

van de Geijn [7]; and Ogieiski and Aiello [9] is quite
competitive to the approach taken here. This is also

the right idea for dense matrices (complete graphs

have big separators). We compare this alternative ap-

proach with ours in a later section.

2 The Maspar architecture

The MP-2 is comprised of three subsystems: a

front-endworkstation,the Array Control Unit (ACU),

and the Processing Element (PE) Array. The ACU is

a 32-bit,custom integerRISC thatstoresthe program,

the instructionfetchingand decoding logic,and isused

for scalars,loop countersand the like.It includesits

own privatememory.

Performance of the MP-2 3 The Subway router compiler

Operation Cycles Ops/sec

(16K machine)

Xnet[1] 179 Kw/s 2.9 Gw/s

Floating mult-add 144 Kops/s 2.4 Gflops/s

Router (approx) 6.3 Kw/s 103 Mw/s

Load 178 Kw/s 2.9 Gw/s

Indirect load 89 Kw/s 1.5 Gw/s

The PE array is a two-dimensional mesh. of pro-

cessors. Each processor may communicate directly

with its eight nearest neighbors. The processors at

the edges of the mesh are connected by wrap-around

channels to those at the opposite edge, making the

array a two-dimensional torus. Each PE in the array

is a RISC processor with 64K bytes of local memory.
All PEs execute the same instruction, broadcast by
the ACU.

The hardware supports three communication prim-

itives: front-end w PE array communication; nearest

neighbor communications among the PEs; and com-
munication in arbitrary patterns through a hardware

global router. The nearest-neighbor connection, called
the Xnet, has a bandwidth of one bit per machine
clock. The bandwidth of the router is at best one-

sixteenth of a bit per clock per PE (sixteen PEs share

one connection into the router) and it can drop by a
factor of two to three due to congestion at internal
nodes of the router's network. The communication

primitives are expressed in the instruction set as syn-

chronous, register-to-register operations. This allows
interprocessor communication with essentially no la-

tency and high bandwidth.

The MP-2 uses 32-bit hardware integer arithmetic,

with microcode for higher precision and floating-point

operations. All operations occur on data in regis-

ters; only load and store instructions reference mem-

ory. The machine has a peak performance close to 2.4

Gflops Mflops using 64 bit IEEE arithmetic.

The Maspar is programmed in either a data paral-

lel C called MPL, or in Maspar's subset of Fortran 90

(which includes a FORALL statement). We have im-

plemented the preprocessor in Maspar Fortran. The

code for accomplishing the communication and the

matrix-vector product (a_topilo_ Subway) is in MPL.

Variables in Maspar Fortran can be declared to reside

on the front-end, or on the processor array. The axes

of array variables stored on the processor array may
be mapped to either of the machine dimensions or to

memory.

Our software router is called Subway. The Sub-

way router compiler determines a sequence of syn-
chronous toroidal shift communications on a processor

grid that implements a given gather operation. As the

name hints, we use a highly structured communica-

tion system, an urban subway system, as a conceptual
model of the communication tasks and the hardware

resources at our disposal. In this system the data to

be moved are passengers, the Xnet wires are the sub-

way tracks and a specific Xnet instruction corresponds

to a train departure. The number of Xnet operations

is a very good measure of the communication time in

our system. Thus, our object is to move all the data
with as small a number of Xnets (train departures) as

possible.

We first describe the input to and output from Sub-

way, and indicate how that output is subsequently
used to move data. The three distributed arrays, ND-

EST, HOME, and OFFSET are the necessary input

to Subway. Subway determines the number, NSEND,

of Xnet operations required to accomplish the gather.

In the arrays DIRECT and DIST, of length NSEND,

it records the direction (North, South, East, West,
Northeast, Northwest, Southeast, or Southwest) that

each train travels, and the distance it travels. These

three variables reside on the front-end. They com-

pletely specify the sequence of Xnet operations re-

quired.

To complete the schedule, Subway also generates

two arrays of PE memory addresses, both of which
are distributed. LOAD_ADDRESS[p; k] specifies the

memory address from which data are loaded into a

register prior to the Xnet operation on that regis-
ter, on processor p at cycle k, for 1 _ k < NSEND.

STORE_ADDRESS[p; k] specifies the memory address

to which data are stored after they move, on processor

p at cycle k, 1 < k < NSEND.

3.1 Autopilot subway

With the tables generated by Subway, a gather op-
eration can be carried out rapidly, as follows. All el-

ements of SRC that are actually going to be sent to

other processors are moved to a single distributed ar-

ray PLATFORM, which is used to hold the data as

it moves through the system. The initial locations

on PLATFORM are also determined by Subway and
stored in INIT_ADDRESS:

Do k'= 1 to maxval[JSRC]

forall (p = 1 : liPttOC)

PLATFORM[p; TNIT_LDDEESS [p; k]]

= SRC[p; k] ;
Enddo

Then, the data are moved:

Do cycle = I to ISEID-I

forall (p = I : JPEOC)

TRAIN [p] =

PLATFORR [LOAD_ADDRESS [p; cycle]]-;

Circular shift (Xnet) TRAIN toroidally in

direction DIRECT [cycle],

distance DIST[cycls] ;

forall (p = I : NPROC)

PLATFORM [STORE_ADDRESS [p; cycle]]

= TRAIN [p] ;

Enddo

At the completion of this loop, all passengers have ar-
rived at their destinations. Their locations on PLAT-

FOI_M are known. For completion of the gather op-

eration, the data now have to be gathered locally

from PLATFORM. Another distributed array, FI-

NAL_ADDRESS, tells where to find this data:

Do k = I to maxval[_DEST]

forall (p = 1 : NPROC)

DEST[p; k] =
PLATFORH[p; FINAL_ADDRESS [p; k]] ;

Enddo

Thus, the routing task is to determine the scalar
NSEND, the front-end arrays DIST and DIRECT, and

the four distributed arrays of PE memory addresses.

3.2 The router compiler

Define a passenger as a four-tuple < z, y, dz, dy >

where (_,y) is the passenger's current station, and

(z + dx, y+ dy) is the passenger's final destination.

In the discussion below, train denotes a particular

distance/direction pair; station denotes a processor,

identified by its coordinates (z, y), e.g. station (3, 4).
The velocity of a train is its direction, (u, v); its speed

is II(u, v)l I. A speed-one train is a local and a higher
speed train is an express. A departure describes a par-

ticular run of a train; the load factor of a departure
is the fraction of stations that have loaded passen-

gers; the load factor of a train is its integrated (over

all departures) load factor. The distance for a given

passenger < z, y, dz, dy > is II(dx, d_)ll which is the
minimum number of Xnet hops to reach the destina-

tion, namely, max(tdzl, IdyD. The o_set of a passenger

is her (dz, dy) pair.

The basic data structure used by Subway is a dis-

tributed collection of stacks. For each station, there is

a stack for every train. In a given stack frame, we can

store a passenger's index and the offset (dz, dy) to her

destination. In addition, we have a distributed array

of stack pointers.

The overall outline of Subway is this.

First, the collection of passengers is determined.
One ticket is created for each passenger, at the paasen-

ger's home station, giving the relative distance to her

destination. Redundant communication is not gener-
ated; even if two or more matrix nonzeros from the

same matrix column are mapped to a given processor,

only one ticket for the corresponding vector element
is written.

The distributed data needed to create tickets is not

the same as the distributed data structure that holds

a sparse matrix or the distributed arrays HOME and

OFFSET described above. These, in fact, are stored

at the destination rather than at the source proces-

sor of each passenger. In order to create the tick-
ets for matrix-vector products, we need, at proces-

sor MAP[3_, the structure of column j of the ma-
trix. Thus, a general-purpose implementation of Sub-

way must do a sparse matrix transpose (of the matrix
structure but not the elements). Our experimental

data, however, only includes matrices whose structure

is symmetric. We have therefore not implemented the

transpose, which would add to the preprocessing time.

Next, the router module which-train determines,

for each passenger, the distance and direction of the

first train on which that passenger will ride.

The passenger then stacks for the train (i. e. she is
pushed onto the stack for her first train at her home

station.)

Now the system is ready to run. It continues, while

there are any passengers in the system who have not

arrived at their destinations, with the following steps:

1. (Nezt-Departure) By examing the sizes of all the

stacks (i.e. the distributed demands) for trains,
pick the next train to run. Call this the active
train.

2. (Load-Train) Pop the stack for the active train at

each station. The fraction of nonempty stacks is

the instantaneous load/actor for this departure.

3. (Run-Train) Move the passenger data (by a

toroidal shift) the characteristic distance and di-
rection of the active train. Decrement (by the

velocity of the train just run) the offset of each

passenger.

4. (Unload-Tkain) Place arriving passengers (those

whose offset is now zero) in the arrival hall at their
current station. For transit passengers (offset not

yet zero) use which-train to determine their next
train. Stack them at their current stations.

As passengers move through the system, their

movements are recorded, in order to allow Subway

to generate the various routing table data structures
mentioned above.

3.3 Routing heuristics

We first introduce some notation and terminology.

The most important aspect of Subway is its

routing heuristic, which-train. When a passenger

< x, y, dz, dy > first arrives at station (x, y), which-
train is used to determine the distance and direc-

tion that this passenger will travel on its next trip.

For example, which-train may decide that passenger
< 2, 3, 4, 2 >, currently at station (2, 3) and bound for

station (6, 5), which is at a distance of four from (2, 3),
will leave station (2, 3) on a Northeast bound express,

speed two, and arrive next at station (4, 5), becoming

passenger < 4, 5, 2, 0 >.

3.4 How which-train works.

Which-train is a rule-based system, in which the

heuristics of Subway are all encoded.

1. Parity.

The Maspar system is like a chessboard. Xnet com-
munication in the diagonal directions is like the move

of a bishop. Using such communication, one may move

from white squares only to other white squares. Com-
munication in the Cartesian directions allows a passen-

ger to reach any destination. We say that the parity
of passenger < x, y, dz, dy > is even or odd depend-

ing on whether dx + dy is even or odd. A passenger
can reach her destination without the use of Cartesian

trains only if she has even parity.

Diagonal trains are faster than Cartesian trains,

however, in the following way. A given passenger of

even parity can always reach her destination in the

smallest possible number of hops, on diagonal trains

exclusively. For example, to go East a distance eight,

one may go four to the Northeast and then 4 to the

Southeast. (And there are many other shortest diag-

onal paths). But the converse is false. To go four to
the Northeast requires eight trips on Cartesian local
trains.

For this reason, we only use local (distance 1)
Cartesian trains. We use them only for odd-parity pas-

sengers, and odd-parity passengers must take them,

thereby changing to even parity. Moreover, we only

run the Cartesian trains, (in round-robin fashion) al-

lowing no diagonal trains to run, until all demand for
them is exhausted. This builds up the queues for the

diagonals, resulting in greater load factors.

2. Adaptive and nonminimal routing.

Aside from parity, the primary determining factor

in train choice is: "Does the train go in the direction

I am headed?" There may not be a unique choice: an

eastbound passenger may use a Northeast or a South-

east train. Define a train to be direct for a passenger

if a trip on that train reduces the passenger's distance

by the speed of the train. Our first criterion then is
that we use direct trains.

Our strategy, however, is adaptive. First, when

there is more than one direct train for a passenger,

which-train puts the passenger onto the least crowded

of the stacks. Thus, it looks at traffic information

available locally, at the passenger's current station.

After trying this limited adaptive routing strategy,
we observed that, late in the rush hour, trains ran with

very low load factors because of one station that still

had passengers trying to leave. By the use of simple
visualization tools, we observed that certain stations

tend to be far more crowded than average 1 . Thus, we

decided that a strategy that requires direct trains is

not optimal, and we experimented with more flexible,

nonminimal routing.

In a distributed implementation, what is immedi-

ately available to which-train in order to route adap-

tively is the number of passengers in each local stack.

The adaptive strategy we use allows passengers to take
an indirect route. We choose an indirect train ti,,d in-

stead of a direct train fair if

p(]s_ack(tdi,)l -- c_) > [staek(tind)l.

We experimentally determined that _ = 3 and p = .65

produced good results.

1Veteran users of subways will not be terribly surprised by

this observation.

3. Express trains

Our first experiments with expresses (Xnet[k] op-

erations, for k > 1) were disappointing. We found

that including expresses in the system increased the
number of Xuets. The reason is that expresses ran

often, and their load factors were very low. We later

decided on a further adaptive strategy. In the exper-

iments reported in Section 4 we ran diagonal trains

of speeds one, two, four, and eight. After all parity

issues are resolved with speed one Cartesian trains,

the diagonal trains run. A passenger takes the fastest

diagonal train she can, but will not "oversh6ot" her
final destination.

Initially only speed eight trains run. They run until

their load factors drop below a threshold -- ten per-

cent in the experiments. Then speed four trains run,

etc. This was the best system we have devised. The
reason that fast trains are useful is that the time for

a cycle is dominated by the indirect load and store,

and this cost is insensitive to Xnet distance. Thus, as

long as their load factors are high enough, expresses
are worthwhile.

In general, nez_-departure runs trains of a given

class (Cartesian local or diagonal speed four, for ex-

ample) round-robin, skipping any for which there is no

demand anywhere, until that train class is shut down.

4 Experimental results

Our experiments employ a collection of grids used

by practitioners in finite element and finite volume

method solutions of partial differential equations. One

is a two-dimensional unstructured triangular mesh

covering the flow field in the neighborhood of an air-

plane wing section. The airfoil has multiple elements,

and the grid is highly nonuniform, with a mesh length

ratio of several orders of magnitude. Another, bracket

is a discretization of a machine part using tetrahedra.

The last is a tetrahedral decomposition of the space

around a full airplane, the Lockheed Viking.

The collection of grids was assembled by Steven
Hammond in an earlier RIACS research effort. That

effort [3] resulted in the development of a grid mapper,

which determines the array MAP by a heuristic opti-

mization strategy. Hammond's method is designed to

load balance the vertices and, subject to that load

balance constraint, to minimize a measure of commu-

Grid Dimensions Vertices Edges A/IEI
3ELT 2 4720 27444 0.82

BRACKET 3 62631 733118 0.32

VIKING 3 156317 2118662

Table 1: Grids employed.

180C

160G

140C

120C

J

60C

40C

.............i............:...........i................
..,°-"

....."

. ..-'"

..."

_°.. •

: .s. _

¢.s

s"

J

10 1 20 25 30

Wor¢_ p_ block

4O

Figure 1: Performance on bracket, 16K processors

nication complexity. The measure is given by

A(MAP) - _ dist(MAP({), MAP(j)),

mesh edges ({,j)

where dist(p, q) denotes the distance, in the machine,
between processors p and q. Thus, A, whose units

are bit-hops, when divided by the total machine band-

width, is a lower bound on communication time. Ham-

mond's experiments with the CM-2 using Dahl's com-
munication compiler showed that A was a reasonably

faithful predictor of communication time.

Some statistics of the grids, and their mapping to a

1K-processor machine, are given in Table 1. The last

column is the average dilation per grid edge. Clearly,

we have substantial locality in these mappings.

First, we give the achieved performance on matrix-
vector product. We assume that the matrix structure

consists of a sparse collection of small dense blocks of

a given size. We tried block dimensions of from one up

to five (for Viking) or six (for bracket). Figures 1 and
2 show performance in Mflops as a function of block

size. (The horizontal axis is the square of the block
dimension -- the number of nonzeros in a block.) The

lowest of the three curves gives actual performance.

180¢

160(

140(

120(

1

......

. ..-'"

.,..'" ._._.o ._"

_ s. _'_

/ .s.s. S'_"

//.
//

/ /
/./

.1" f

0
0

I

i

5

i

Word= per block

Figure 2: Performance on Viking, 16K processors

95O

9OO

X

70O

fl0C

50C

NEWS u u NEWS + D_I

• NEWS + Adlp_

= NEWS + Dkmg + Adq_

i i
1 2 9

NEWS + Pmlly • • NEWS 4- Padty + Sod

NEWS + I=Wlty +Fm, l-(_t w

NEWS + p_ly + ER:m_N$ I='
I i i I I =

3 4 5. 6 7 8

Figure 3: Xnets for different strategies; bracket on 1K

processors

The middle curve gives the performance of the local

dot products -- the communication time has been ig-

nored. The topmost curve is the local dot product

performance rescaled to eliminate load imbalance ef-
fects. From these data we see that load balance is

fairly poor -- the mapper should be improved to dis-
tribute the work rather than the number of matrix

rows evenly. Once that is done, the local performance

is a reasonably high fraction of peak. Due to sparsity,
we are forced to use indirect loads in the dot prod-

uct code, which slows it down. Most important, we
see that for larger block sizes, we obtain 500 Mflops.

Communication time is still greater than the compu-

tation time. While this performance is already inter-

esting, we believe it can he improved, perhaps by as
much as a factor of two, with further improvements to

our implementation.

We next illustrate the effect (on the number of train

departures) of some of the heuristics discussed above.

Figure 3 gives several data points. All data points ex-

cept the lowest use local trains (speed one) only. The

two uppermost use either Cartesian only or Cartesian

and diagonal without the parity heuristic discussed in
Section 3.4, and without nonminimal adaptivity. The

two points below those show the effect of the non-

minimal adaptive routing. The NEWS+Parity data

point shows the added effect of the parity optimiza-
tion in addition to the nonminimal adaptive routing.

The Sort data point shows the negligible effect of sort-

ing the stacks initially (after passengers are stacked at

their home stations) in "longest trip goes first" order.
The Fan-out data point shows what happens when a

single SRC value is needed by multiple remote proces-

sots, and we allow it to be delivered via a broadcast

tree instead of separate messages. For this, we had to

modify our data structures so that a single passenger

may have multiple destinations. Finally, the best data

point was obtained by using fan-out and express trains
as described in Section 3.4.

We also implemented an optimized code for use of

the Maspar router. It removes redundant communica-

tion as does Subway. It also makes some attempt to
schedule the use of the router to avoid destination con-

gestion. We compared Subway with this approach and
with an implementation of the Ogielski/Aiello tech-

nique (which is Xnet based, like Subway). We used
bracket on 1K, 4K, and 16K machines as the test.

Both Xnet based techniques are considerably faster

than the router. Subway is also better than the Ogiel-

ski/Aiello technique (which is meant for random spar-

sity). The greater the locality of the mapping, the
greater its advantage. In particular, for bracket on a

16K machine, where there are only four vertices per

processor on average, the two methods are close.

4.1 Preprocessing times

Our sequential Fortran implementation of Subway

takes 206 (resp. 1262) seconds for bracket (resp.

Viking) on a Sparc 10, simulating a 1K processor Mas-
par. For comparison, 100 iterations of the conjugate

gradient method using autopilot Subway (with block

size one) for the matrix-vector product takes 4.5 (resp.

8.3) seconds on the MP-2. Fortunately, Subway is es-
sentially an embarrassingly parallel algorithm: it runs

in 10.8 (reap. 42.8) seconds on the MP-2. Thus, pre-

processing time is modest. Our Maspar Fortran imple-

mentation of Subway is straightforward and we have
made no attempt at optimization.

The space needed for the router tables is consid-

erable. It is 12 Mbytes for bracket on a 1K Maspar.

For comparison, the matrix itself requires 6.4 Mbytes.

We have, however, also made no effort to reduce the

memory required (by using short integers, for exam-

pie.) Moreover, the table size and the preprocessing

time are independent of the block size. Thus, the time

and space required do not appear to us to be a critical

issue for nonadaptive grid applications.

5 Conclusions

Many questions remain. Charles Leiserson has

pointed out that distance-2Cartesian isto distance-i

diagonal as distance-Idiagonalistodistance-ICarte-

sian. This opens a whole new area for investigation.

The optimal strategyfor choiceof trainsisfar from
clear.

The measure of congestionto use in adaptive rout-

ing isalso not clear.That ours works isinteresting,

but others,lesslocalthan ours,may be better.

We have deferred work on our mapper, which

clearlyneeds to be improved in two ways. First,load

balance based on vertex count istoo crude. Second,

we may, on the basisofthe Subway data,be ableto de-

finea more accuratepredictorofcommunication time.

The predictorused now takesno noticeofheavy local

traffic,which seems to be critical.

Whether offlineroutingisusefulfor adaptive grid
codes remains to be seen.

Acknowledgements

This work was supported by NASA under Con-
tract NAS 2-13721 between NASA and the Univer-

sitiesSpace Research Association(USRA). We would

liketo thank Frederik Manne forgivingus hishighly-

tuned MPL versionofthe Ogielski/Aiellomethod, and

Steven Hammond for hishelp inmapping the grids.

routing. Proc. Advanced Research in VLS! and
Parallel Systems Conf., March, 1992.

[2] E. D. Dahl. Mapping and compiled communi-
cation on the Connection Machine system. In

D. W. Walker and Q. F. Stout, editors, Proc.

Fifth Distributed Memory Computer Conference,

Charleston, S.C., April, 1990. IEEE Computer So-

ciety Press.

[3] Steven Warren Hammond. Mapping Unstructured

Grid Computations to Massively Parallel Comput-

ers. PhD thesis, Rensselaer Polytechnic Institute,

Troy, NY. 1992.

[4] Bruce Hendrickson, Robert Leland, and Steve

Plimpton. An efficient parallel algorithm for

matrix-vector multiplication. Sandia National
Laboratory Tech. Report SAN92-2765 • UC-405.

March 1993. In_l. J. High Speed Comput., to ap-

pear.

[5] Bruce Hendrickson and Robert Leland. The Chaco
user's guide. Sandia National Laboratory Tech.

Report SAN93-2339 • UC-405. November 1993.

[6] F. Thomas Leighton. Introduction to Parallel Al-

gorithms and Architectures: Arrays, Trees, Hyper-

cubes. Morgan Kanfman, San Mateo, CA, 1992.

[7] John G. Lewis and Robert A. van de Geijn. Dis-

tributed memory matrix-vector multiplication and

conjugate gradient algorithms. Proe. Supercom-
pnting 'g3, pp. 484-492. IEEE Computer Society

Press, 1993.

[8] R. Mirchandany, J. Saltz, R. Smith, D. Nicol, and

K. Crowley. Principles of runtime support for par-

allel processors. Proc. Second Intl. Conf. on Su-

percomputing, pp. 140-152. St. Malo, France, July
1988.

[9]A. T. Ogielskiand W. Aiello.Sparse matrix com-

putations on parallelprocessor arrays.SIAM J.

ScienL and Star. Comput. 14 (1993), pp. 519-530.

References

[I] K. Bolding and L. Snyder.Mesh and torus chaotic

RIACS
Mail Stop T041-5

NASA Ames Research Center

Moffett Field, CA 94035

